{-# OPTIONS --without-K --safe #-}
module Category.Monad.Indexed where
open import Category.Applicative.Indexed
open import Function
open import Level
private
  variable
    a b c i f : Level
    A : Set a
    B : Set b
    C : Set c
    I : Set i
record RawIMonad {I : Set i} (M : IFun I f) : Set (i ⊔ suc f) where
  infixl 1 _>>=_ _>>_ _>=>_
  infixr 1 _=<<_ _<=<_
  field
    return : ∀ {i} → A → M i i A
    _>>=_  : ∀ {i j k} → M i j A → (A → M j k B) → M i k B
  _>>_ : ∀ {i j k} → M i j A → M j k B → M i k B
  m₁ >> m₂ = m₁ >>= λ _ → m₂
  _=<<_ : ∀ {i j k} → (A → M j k B) → M i j A → M i k B
  f =<< c = c >>= f
  _>=>_ : ∀ {i j k} → (A → M i j B) → (B → M j k C) → (A → M i k C)
  f >=> g = _=<<_ g ∘ f
  _<=<_ : ∀ {i j k} → (B → M j k C) → (A → M i j B) → (A → M i k C)
  g <=< f = f >=> g
  join : ∀ {i j k} → M i j (M j k A) → M i k A
  join m = m >>= id
  rawIApplicative : RawIApplicative M
  rawIApplicative = record
    { pure = return
    ; _⊛_  = λ f x → f >>= λ f′ → x >>= λ x′ → return (f′ x′)
    }
  open RawIApplicative rawIApplicative public
RawIMonadT : {I : Set i} (T : IFun I f → IFun I f) → Set (i ⊔ suc f)
RawIMonadT T = ∀ {M} → RawIMonad M → RawIMonad (T M)
record RawIMonadZero {I : Set i} (M : IFun I f) : Set (i ⊔ suc f) where
  field
    monad           : RawIMonad M
    applicativeZero : RawIApplicativeZero M
  open RawIMonad monad public
  open RawIApplicativeZero applicativeZero using (∅) public
record RawIMonadPlus {I : Set i} (M : IFun I f) : Set (i ⊔ suc f) where
  field
    monad       : RawIMonad M
    alternative : RawIAlternative M
  open RawIMonad monad public
  open RawIAlternative alternative using (∅; _∣_) public
  monadZero : RawIMonadZero M
  monadZero = record
    { monad           = monad
    ; applicativeZero = RawIAlternative.applicativeZero alternative
    }