{-# OPTIONS --cubical --no-import-sorts #-}
module Number.Prettyprint where
open import Cubical.Data.Sigma.Base
open import Number.Postulates
open import Number.Base
[ℕ] = Number (isNat , anyPositivityᵒʳ)
[ℕ⁺⁻] = Number (isNat , isNonzeroᵒʳ )
[ℕ₀⁺] = Number (isNat , isNonnegativeᵒʳ)
[ℕ⁺] = Number (isNat , isPositiveᵒʳ )
[ℕ₀⁻] = Number (isNat , isNonpositiveᵒʳ)
[ℤ] = Number (isInt , anyPositivityᵒʳ)
[ℤ⁺⁻] = Number (isInt , isNonzeroᵒʳ )
[ℤ₀⁺] = Number (isInt , isNonnegativeᵒʳ)
[ℤ⁺] = Number (isInt , isPositiveᵒʳ )
[ℤ⁻] = Number (isInt , isNegativeᵒʳ )
[ℤ₀⁻] = Number (isInt , isNonpositiveᵒʳ)
[ℚ] = Number (isRat , anyPositivityᵒʳ)
[ℚ⁺⁻] = Number (isRat , isNonzeroᵒʳ )
[ℚ₀⁺] = Number (isRat , isNonnegativeᵒʳ)
[ℚ⁺] = Number (isRat , isPositiveᵒʳ )
[ℚ⁻] = Number (isRat , isNegativeᵒʳ )
[ℚ₀⁻] = Number (isRat , isNonpositiveᵒʳ)
[ℝ] = Number (isReal , anyPositivityᵒʳ)
[ℝ⁺⁻] = Number (isReal , isNonzeroᵒʳ )
[ℝ₀⁺] = Number (isReal , isNonnegativeᵒʳ)
[ℝ⁺] = Number (isReal , isPositiveᵒʳ )
[ℝ⁻] = Number (isReal , isNegativeᵒʳ )
[ℝ₀⁻] = Number (isReal , isNonpositiveᵒʳ)
[ℂ] = Number (isComplex , anyPositivityᶠ )
[ℂ⁺⁻] = Number (isComplex , isNonzeroᶠ )
{-# DISPLAY Number (isNat , anyPositivityᵒʳ) = [ℕ] #-}
{-# DISPLAY Number (isNat , isNonzeroᵒʳ ) = [ℕ⁺⁻] #-}
{-# DISPLAY Number (isNat , isNonnegativeᵒʳ) = [ℕ₀⁺] #-}
{-# DISPLAY Number (isNat , isPositiveᵒʳ ) = [ℕ⁺] #-}
{-# DISPLAY Number (isNat , isNonpositiveᵒʳ) = [ℕ₀⁻] #-}
{-# DISPLAY Number (isInt , anyPositivityᵒʳ) = [ℤ] #-}
{-# DISPLAY Number (isInt , isNonzeroᵒʳ ) = [ℤ⁺⁻] #-}
{-# DISPLAY Number (isInt , isNonnegativeᵒʳ) = [ℤ₀⁺] #-}
{-# DISPLAY Number (isInt , isPositiveᵒʳ ) = [ℤ⁺] #-}
{-# DISPLAY Number (isInt , isNegativeᵒʳ ) = [ℤ⁻] #-}
{-# DISPLAY Number (isInt , isNonpositiveᵒʳ) = [ℤ₀⁻] #-}
{-# DISPLAY Number (isRat , anyPositivityᵒʳ) = [ℚ] #-}
{-# DISPLAY Number (isRat , isNonzeroᵒʳ ) = [ℚ⁺⁻] #-}
{-# DISPLAY Number (isRat , isNonnegativeᵒʳ) = [ℚ₀⁺] #-}
{-# DISPLAY Number (isRat , isPositiveᵒʳ ) = [ℚ⁺] #-}
{-# DISPLAY Number (isRat , isNegativeᵒʳ ) = [ℚ⁻] #-}
{-# DISPLAY Number (isRat , isNonpositiveᵒʳ) = [ℚ₀⁻] #-}
{-# DISPLAY Number (isReal , anyPositivityᵒʳ) = [ℝ] #-}
{-# DISPLAY Number (isReal , isNonzeroᵒʳ ) = [ℝ⁺⁻] #-}
{-# DISPLAY Number (isReal , isNonnegativeᵒʳ) = [ℝ₀⁺] #-}
{-# DISPLAY Number (isReal , isPositiveᵒʳ ) = [ℝ⁺] #-}
{-# DISPLAY Number (isReal , isNegativeᵒʳ ) = [ℝ⁻] #-}
{-# DISPLAY Number (isReal , isNonpositiveᵒʳ) = [ℝ₀⁻] #-}
{-# DISPLAY Number (isComplex , anyPositivityᶠ ) = [ℂ] #-}
{-# DISPLAY Number (isComplex , isNonzeroᶠ ) = [ℂ⁺⁻] #-}